## Solar-Powered Unmanned Aerial Vehicle



# Spring / Summer 2022 Recap

Sultan Hazawbar & Gabriel Martin

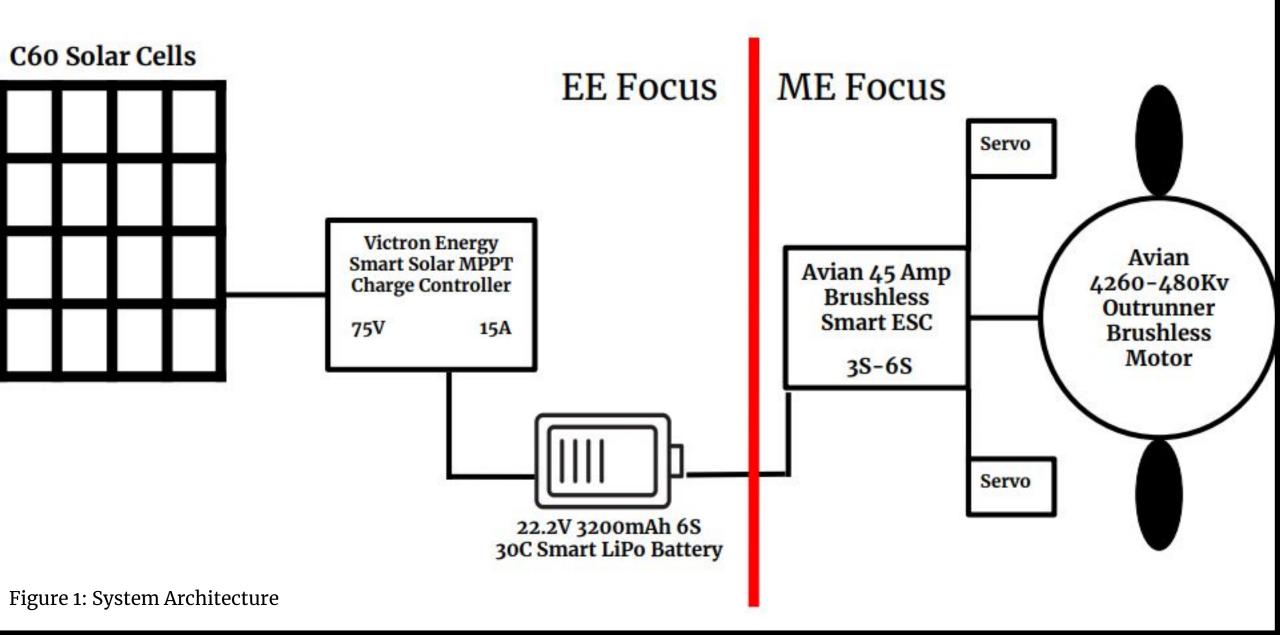
**Project Client:** David Willy

**Project Sponsor**: Gore

Project Advisors: Venkata Yaramasu, Ph. D &

Alexander Dahlmann, GTA

Project Partners: ME 486C Team


### Overview

Goal: To construct a solar powered unmanned aerial vehicle (UAV) that will fly 1  $\frac{1}{2}$  times the duration that a sole onboard battery would fly it for.

### **Design Order**

- 1) Research
- 2) Bylaws & Delegations
- 3) Requirements & Constraints
- 4) Individual Prototyping
- 5) Deliverables & Supporting Tasks
- 6) Component Selection
- 7) Build Preparation & Summer Tasks

### Solar UAV System Architecture



### Research

#### **Photovoltaics**

- Photovoltaic Energy
- Maximum Power Point Tracking
- Series & Parallel Configurations
- Types of Solar Technologies
- Standard Test Conditions

#### **Lithium Polymer Batteries**

- Charge & Discharge Characteristics
- Life Expectancy
- Weight Advantage

#### <u>Aerodynamics</u>

- Thrust
- Flight Techniques

#### **Brushless Motors**

- Electronic Speed Control
- Power Consumption

#### **Resources:**

- 2019 ME Capstone Solis Fur's Assembly Manual
- Photovoltaics: Design & Installation Manual
- Academic Articles & Publications
- Trusted Websites
- Our Client
- Project Advisors
- EE 404 Material
- Youtube

# **Bylaws & Delegations**

We established the standards and rules expected of our team members in regards to:

- Communication
- Work Ethic
- Responsibilities
- Project Execution

These are in writing and have been acknowledged by the members of our team.

## Requirements & Constraints

Acknowledging the requirements and constraints set by our client to develop the ideal product.

### Requirements

- Flight Time
- Presentation & Performance
- Lightweight
- Use of MPPT Charge Controller

#### Constraints


- Budget
- Component Accessibility
- Time Frame

# **Individual Prototyping**

Each of us were tasked with prototyping a specific element of our project.

#### **Gabriel**

- Successfully soldered two thin film panels in series and in parallel.
- Soldered leads from the panels to a buck converter and got reads using a DMM.
- Adjusted the converter's potentiometer to get an IV & PV curve.



#### Sultan

- Successfully hooked up a solar panel to a small MPPT charge controller module.
- Connected controller to a LiPO battery.
- Received indication that battery was being charged via LED light feature from the charge controller.



# Deliverables & Supporting Tasks

Aside from research and prototyping, our team had a number of deliverables and tasks to complete over spring.

- Website development and updates
- EE 476C assignments regarding professionalism and conflict management
- Informational sessions with our advisors and experts in our projects scope
- Client meetings
- Team meetings
- GTA meetings
- Presentations
- Final design document

## **Component Selection**

### **Battery**



Spektrum 2.2V 3200mAh 6S 30C Smart LiPo Battery

### **Charge Controller**



Victron Energy Smart Solar MPPT Charge Controller 75V 15A

#### **Panel**



Sunpower C60 Monocrystalline Silicon Solar Cell

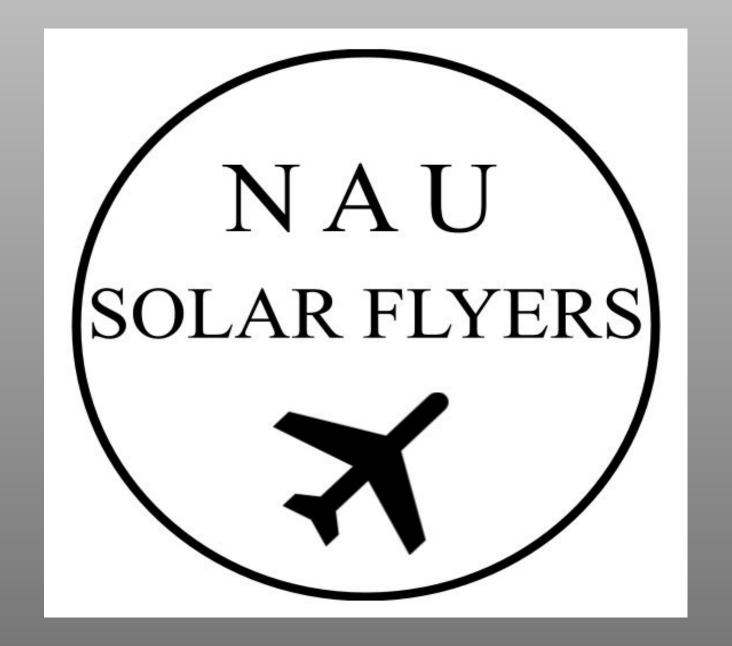
# **Component Selection**

### **Battery Specifications**

| <u>Characteristic</u>                | <u>Measurement</u> |  |  |
|--------------------------------------|--------------------|--|--|
| Nom.Voltage / Cell Count             | 22.2 V / 6 S       |  |  |
| Battery Capacity                     | 3.2 Ah / 71 Wh     |  |  |
| Weight (g)                           | 484                |  |  |
| WxLxH(mm)                            | 42 x 142 x 38      |  |  |
| Maximum Continuous<br>Discharge Rate | 30 C               |  |  |

### **Panel Specifications**

| <u>Characteristic</u>   | <u>Measurement</u> |  |  |  |
|-------------------------|--------------------|--|--|--|
| Solar Cell              | 22.2 V / 6 S       |  |  |  |
| Vpv, Ipv @ STC per Cell | .58 V / 5.9 A      |  |  |  |
| Weight per Cell (g)     | 7                  |  |  |  |
| WxL(mm)                 | 125 x 125          |  |  |  |
| Configuration           | 24 units in series |  |  |  |
| Efficiency              | 23%                |  |  |  |


### **Charge Controller Specifications**

| <u>Characteristic</u> | Battery<br>Voltage | Charging<br>Current | Max<br>Efficiency | WxLxH<br>(mm)  | Weight<br>(g) | Special Function                |
|-----------------------|--------------------|---------------------|-------------------|----------------|---------------|---------------------------------|
| <u>Measurement</u>    | 12V/24V            | 15 A                | 98%               | 113 x 100 x 40 | 500           | Programmable from mobile device |

# **Build Preparation**

- 1) Order materials by the end of this week:
  - a) Panels
  - b) Connectors
  - c) Soldering Materials
  - d) Charge Controller
  - e) Various Other Small Things
- 2) Website Updates
- 3) Review ME team's progress
- 4) Move forward with initial prototyping ASAP
- 5) Research more into the functionality of our charge controller

# Questions?

